Series

- Subclass of numpy.ndarray
- Data = any type
- Index labels need not be ordered
- Duplicates are possible (but result in reduced functionality)
from pandas import Series, DataFrame
import pandas as pd
list_data=[1,2,3,4,5]
list_name=['a','b','c','d','e']
example_obj=Series(list_data, list_name, dtype=np.float32, name="example")
dict_data={'e':6,'f':7,'g':8,'h':9,'i':10}
example_obj2=Series(dict_data)
print(f"initializing series with list: \\n{example_obj}")
print(f"initializing series with dict: \\n{example_obj2}")
#initializing series with list:
#a 1.0
#b 2.0
#c 3.0
#d 4.0
#e 5.0
#Name: example, dtype: float32
#initializing series with dict:
#e 6
#f 7
#g 8
#h 9
#i 10
#dtype: int64
print(example_obj["a"]) # find values by index
example_obj["a"] =
example_obj.values #value list
example_obj.index #index list # 1 1.0 Just like df,
dict_data={1:1,2:2} # 2 2.0 the index is the
indexes=[1,2,3,4,5] # 3 NaN standard
series= Series(dict_data, index=indexes) # 4 NaN
# 5 NaN
DataFrame

DataFrame indexing
loc → index location ( call by index name)
iloc → index position ( call by index)
DataFrame handling
df.dept = df.age > 40 #boolean
df.to_csv, df.index, df.values
df.drop(”dept”,axis=1) → returning a DataFrame that dosen’t have column “dept”
del df[”dept”] → deleting the column “dept” in df
Selection & Drop