Adversarial Nets

$D$ and $G$ play the following two-player minimax game with value function $V(G,D)$

$$ \min_{G} \max_{D}V(D,G) = \mathbb{E}{x \sim p{data}(x)}[\log D(x)] + \mathbb{E}_{z\sim p_z(z)}[\log (1-D(G(z)))] $$

Pedagogical Explanation

$\cdots$ : Discriminative distribution $D$

$\cdots$ : Data generating distribution $p_x$

—— : Generative distribution $p_g(G)$

$\uparrow$ : how mapping $x = G(z)$ imposes the non-uniform distribution $p_g$ on transformed samples

Untitled

Untitled

Untitled

Untitled

Untitled