$$ \tilde{I} = \lambda \times I_a + (1-\lambda)\times I_b\\ \rho_a = \lambda , \ \rho_b = 1-\lambda $$
$$ \tilde{I} = (1 - M_{\lambda}) \odot I_a + M_{\lambda}\odot I_b\\ \rho_a = 1-\lambda , \ \rho_b = \lambda $$
$$ \tilde{I} = (1 - M_{\lambda^a}) \odot I_a + T_{\theta}(M_{\lambda^b}\odot I_b)\\ \\ S(I_i) = \frac{CAM(I_i)}{sum(CAM(I_i))} \\ \rho_a = 1-sum(M_{\lambda^a}\odot S(I_a)) \\ \rho_b = sum(M_{\lambda^b}\odot S(I_b)) $$
$$ \tilde{I} = \bold{B} \odot I_a + (1-\bold{B})\odot I_b \\ \rho_a = \lambda , \ \rho_b = 1-\lambda $$