
A UGM define the joint distribution of a set of variables over the structure of an undirected graph.
Nodes → variable / edges → Conditional independence relationship
Local Markov property
$$ p(y_i|\textbf{y}_{\backslash i}) = p(y_i|N(y_i)) $$
Global Markov property
$$ p(y_i|y_j,y_S) = p(y_i|y_S) $$
Then, the joint distribution of the variables $y_1, y_2, \dots , y_N$can be factorized as
$$ p(\textbf{y}) = \frac{1}{Z} \Pi_{C\in\mathcal{C}(G)} \psi_C (\textbf{y}_C) $$
Hammersly-Clifford theorem
<aside> 💡 그래프 $G$와 포텐셜 함수 $\psi_C (\textbf{y}_C)$ 에 따라 $y_1, y_2, \dots , y_N$에 대해 다양한 확률 분포를 모델링할 수 있다.
</aside>
$$ \psi_C (\textbf{y}_C|\textbf{w}) = exp(-E_C(\textbf{y}_C|\textbf{w})) \\ E_C(\textbf{y}_C|\textbf{w})=-log(\psi_C (\textbf{y}_C|\textbf{w})) $$