/

$$ \frac{v_2}{R_1} + \frac{v_1}{1Mega} + C \frac{dv_1}{dt} = 0 \\ \frac{v_1}{1Mega} \approx 0 \\ v_1 = - \int\frac{v_2}{R_1C}dt \\ 0 \leq t \leq \frac{T}{2} \text{일 때} v_2 = V_{DD} \\ \therefore v_1 = \frac{V_{DD}}{R_1C} + C_1 \\ C_1 = V_T (\because t=0, v_1 = V_T)\\ t = \frac{T}{2} \text{일 때} v_1 = -V_T \\ \therefore V_T = -\frac{V_{DD}}{R_1C} \times \frac{T}{2} + V_T \\ \therefore T = \frac{4V_TR_1C}{V_{DD}} $$

$$ \frac{R_3}{R_2} = 3.125 \\ R_1C \approx 0.00531 $$

$$ R1 = 54kΩ \\

R3 = 3kΩ = 1 kΩ + 2 kΩ \\

R2 = 1kΩ \\

C = 100nF \\ \frac{R_3}{R_2} = 3.0 \\ R_1C \approx 0.0054 $$

\frac{R_3}{R_2} = 3.125 \\ R_1C \approx 0.00531

$$ R_1 = 30kΩ \\

R_2 =1.5kΩ \approx 1.46kΩ = 680kΩ+680kΩ +100 kΩ\\

R_3 = 5kΩ =10k || 10k \\

C_1 = 22µF \\

C_2 = 1nF \\

R_s = 1kΩ $$

$$ C1 = 22 µF \\ R1 = 49kΩ = 22kΩ+22kΩ +5kΩ(=10kΩ||10kΩ) \\ R2 =10kΩ \\ C1 = 22µF \\ C2 = 1nF \\ Rs = 1kΩ $$